Crystal Structure of \boldsymbol{p}-Phenylenediamine Dihydrochloride*

By R.Chandrasekaran
Centre of Advanced Study in Physics, University of Madras, Madras 25, India

(Received 31 March 1967 and in revised form 19 March 1968)

Abstract

Crystals of p-phenylenediamine dihydrochloride are triclinic, $a=8.75, b=5.87, c=4.34 \AA, \alpha=99^{\circ} 47^{\prime}$, $\beta=95^{\circ} 34^{\prime}, \gamma=111^{\circ} 10^{\prime}, Z=1$, space group $P \mathrm{I}$. The structure has been determined in two projections. Three-dimensional X-ray intensity data were used to refine the positional and thermal parameters C the atoms by the least-squares method. All the hydrogen atoms in the molecule were located from an ($F_{o}-F_{c}$) synthesis; the final R value is $0 \cdot 106$. The molecules in the lattice are held together by a system of hydrogen bonds of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ - The $\mathrm{C}-\mathrm{NH}_{3}^{+}$bond length of $1.49 \AA$ in this structure is very close to the mean value of $1.487 \AA$ observed in accurately determined structures of α-amino acids.

Introduction

The structure determination of the p-phenylenediamine dihydrochloride was undertaken as one of many similar studies in this laboratory on structures containing the amino group. The chemical formula of this compound is

It was of interest to determine whether the two amino groups become protonated, so that the chlorine atoms exist as chloride ions in the lattice. In such a case, purely from symmetry considerations one would expect the chloride ions to take symmetrical positions about the two $-\mathrm{NH}_{3}^{+}$groups to facilitate hydrogen bonding. Conformational features of the amino group in such an aromatic ring system would be of interest for comparison with their features in other structures, such as in amino acids.

Experimental

Good needle-shaped crystals were chosen from a commercially available pure sample. The crystals were colourless, but they slowly turned black on exposure to air and light. It was therefore necessary to seal the crystal in a Lindemann capillary tube. The outer surface of the tube surrounding the crystal was smeared with ink to minimize the amount of light reaching the specimen.

[^0]Rotation, Weissenberg and precession photographs were taken for the crystal about both the c and the b axes, with nickel filtered $\mathrm{Cu} K \alpha$ radiation. The photographs did not indicate any systematic absences of reflexions and showed that the crystal belonged to the triclinic system. The crystallographic data are summarized below:
Space group:

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} .2 \mathrm{HCl} ; M=181 \\
& a=8.75 ; b=5.87 ; c=4.34 \AA ; \\
& \alpha=99^{\circ} 47^{\prime} ; \beta=95^{\circ} 34^{\prime} ; \\
& \gamma==111^{\circ} 10^{\prime} .
\end{aligned}
$$

$U=201 \cdot 4 \AA^{3}$
$D_{m}=1.51$ (flotation in benzene-carbon-tetrachloride), $Z=1$.
$D_{x}=1.508 \mathrm{~g} . \mathrm{cm}^{-3}$
Absorption coefficient for X-rays, $\mu(\mathrm{Cu} K \alpha)=67 \mathrm{~cm}^{-1}$
In view of the symmetry of the molecule, the space group was assumed to be $P \bar{T}$ with half the molecule forming the asymmetric unit, the centre of inversion of the molecule occupying a centre of inversion of the space group. In fact, this choice of the space group was amply supported by the good agreement between the F_{o} 's and F_{c} 's at the end of the structure analysis.
The intensities of the $h k L$ reflexions for the layers $L=0$ to 3 and $h 0 l$ reflexions were recorded with $\mathrm{Cu} K \alpha$ radiation using the multiple-film normal beam and equi-inclination Weissenberg techniques. During exposure for the higher layers, the film cassette was shifted through a small distance at regular intervals, the actual shift being determined by the length of the smallest spot as estimated from a trial photograph. By this technique (Stanley, 1955) all the spots were slightly drawn out, thereby causing a linear integration of the intensity. The peak intensities were estimated visually by comparison with a standard set of spots, recorded with the same crystal. In spite of the one-dimensional integration for the higher layers, the spot shapes on one half of the film were elongated at low angles. Therefore, Lorentz and polarization factors with the correction of

Phillips (1962) were applied to reflexions on this half of the film. The reflexions on the other half appeared to have almost uniform spot size and hence Lorentz and polarization factors alone were applied to these. Some of the reflexions recorded on both halves of the film were then used to bring the intensities measured on the two halves of the film on to the same relative scale. The average thickness of the crystal used was less than 0.1 mm and no absorption correction was applied. The intensities measured on the various levels were placed on a common scale by comparison with the cross layer data and then on the absolute scale by Wilson's (1942) method.

Structure analysis

The approximate coordinates of the chlorine atom were determined from the two Patterson projections down the c and b axis as $0.378,0 \cdot 183,0.067$. Since the Patterson map down the c axis contained sharply resolved peaks, a minimum function map (Buerger, 1951) was drawn. This map yielded the structure in this projection without ambiguity. An attempt to determine the structure in the projection down the b axis by the application of the minimum function method was only partly successful. This map clearly indicated the approximate orientation of the molecule and also the positions of the chlorine and the nitrogen atoms, but there was considerable overlap in the region of the carbon atoms. Hence, a chlorine-phased electron density function was calculated for this projection and the positions of all the atoms were then determined.
Preliminary structure factor calculations were carried out including all these atoms. The R values for the projections down the c and the b axes were calculated to be 0.23 and 0.21 respectively. The coordinates of the atoms were refined by successive two-dimensional difference-Fourier syntheses until the R values were reduced to 0.143 and 0.153 respectively for these two
projections. In the above calculations, the value of the thermal paramater B was $1.6 \AA^{2}$ as determined from the Wilson plots.
Initial three-dimensional least-squares refinement of the structure with the block-diagonal approximation was carried out on the CDC 3600 computer with a program written by the author for the space group $P \overline{1}$. Special care was taken to take into account the possible interaction between the scale factor k for the F_{o} 's and the thermal parameter B. The three-dimensional data consisting of 625 reflexions, including 60 unobserved reflexions were used in the refinement. The unobserved reflexions were assigned half the value of the locally observed minimum $\left|F_{o}\right|$. Two cycles of refinement of

Fig. 1. Sections of the difference-Fourier map through (a) the plane of the molecule and (b) the plane expected to contain the hydrogen atoms bonded to the nitrogen atom. The contours are from $0.4 \mathrm{e} . \AA^{-3}$ at increments of $0 \cdot 1 \mathrm{e} . \AA^{-3}$.

Fig.2. Final electron-density map, projection down the c axis. Contours are drawn from zero level at intervals of 1 e. \AA^{-2}. At chlorine, contours are drawn at intervals of 2 e. \AA^{-2}.
the positional parameters with a single overall thermal parameter B for the atoms brought the R value from 0.17 to 0.142 . Further refinement after switching to individual isotropic thermal parameters for each of the atoms reduced the R value to $0 \cdot 118$.

At this stage, a full-matrix least-squares program of Gantzel, Sparks \& Trueblood (1961) for the CDC 3600 computer became available. This program was used to refine the positional parameters of the atoms, anisotropic thermal parameters of the chlorine atom individual isotropic thermal parameters for the rest, and the layerwise scale factors. Three cycles of refinement brought the R value down to $0 \cdot 112$.

In all the above refinements, a unit weighting scheme for F_{o} 's was employed and the function $\Sigma\left(F_{o}-F_{c}\right)^{2}$ was minimized. The atomic scattering factors were adopted from International Tables for X-ray Crystallography (1962). The estimated standard deviations were calculated in the program from the residuals and the diagonal elements of the inverse matrix oft he normal equations.

A three-dimensional difference-Fourier synthesis was now computed* with a view to locating the hydrogen atoms. Sections of the difference Fourier map

[^1]through the plane of the molecule, and the plane expected to contain the hydrogen atoms bonded to the nitrogen atom, are shown in Fig. 1. The positions of all five hydrogen atoms in the asymmetric unit were determined from this map.

Least-squares refinement was then continued, adjusting the positional parameters of all the atoms including the hydrogens, anisotropic thermal parameters of the chlorine atom, isotropic thermal parameters of the remaining non-hydrogen atoms and the layerwise scale factors. The hydrogen atoms were assigned a constant value of $B=2 \cdot 5 \AA^{2}$. The weighting function used was $W=1 /\left(A+\left|F_{o}\right|+C\left|F_{o}\right|^{2}\right)$ (Cruickshank, Pilling, Bujosa, Lovell \& Truter, 1961) with $A=2.6$ and $C=0.05$. After two cycles of full-matrix refinement the R value converged to $0 \cdot 106$. The final shifts were much less than the corresponding standard deviations.

Results and discussion

The final electron density distributions down the c and b axes are shown in Fig. 2 and 3 respectively. The final positional parameters of the atoms with their standard deviations and thermal parameters are listed in Table 1. The observed and calculated structure factors are given in Table 2.

Table 1. Final atomic coordinates (fractional), standard deviations (\AA) and thermal parameters

	x	y	z	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	$B\left(\AA^{2}\right.$
Cl	0.3718	$0 \cdot 1743$	0.0695	$0 \cdot 002$	$0 \cdot 002$	$0 \cdot 002$	
C(1)	$0 \cdot 1129$	0.3854	0.5714	0.009	0.009	0.011	$2 \cdot 74$
$\mathrm{C}(2)$	$0 \cdot 1561$	$0 \cdot 5900$	$0 \cdot 4384$	0.008	0.009	0.010	$2 \cdot 58$
C(3)	0.0481	0.7045	$0 \cdot 3594$	0.009	$0 \cdot 009$	$0 \cdot 010$	$2 \cdot 26$
N	0.3266	$0 \cdot 6829$	$0 \cdot 3584$	$0 \cdot 008$	$0 \cdot 008$	0.010	$2 \cdot 56$
H(1)	$0 \cdot 3523$	0.5509	$0 \cdot 2825$		Mean		$2 \cdot 50$
H(2)	0.3467	$0 \cdot 8450$	$0 \cdot 2302$		$\sigma(x)=0 \cdot 13$		$2 \cdot 50$
H(3)	$0 \cdot 4101$	0.7478	0.5385		$\sigma(y)=0.14$		$2 \cdot 50$
H(4)	$0 \cdot 1897$	0.3169	$0 \cdot 6160$		$\sigma(z)=0.15$		$2 \cdot 50$
H(5)	$0 \cdot 0819$	$0 \cdot 8709$	$0 \cdot 2669$				$2 \cdot 50$
		B_{22}	B_{33}	B_{12}	B_{13}		B_{23}
		0.022528	$0 \cdot 035859$	0.017284	$0 \cdot 009782$		0.018248

Fig.3. Final electron-density map, projection down the b axis. Contours are drawn as in Fig.2.

Table. 2. Observed and calculated structure factors for phenylenediamine dihydrochloride
The column headings are $h, 10\left|F_{o}\right|$ and $10 F_{c}$.
シャ

Intramolecular features

The bond distances and angles in the molecule are shown in Fig. 4 and listed in Table 3.

The three $\mathrm{C}-\mathrm{C}$ bond distances in the asymmetric half of the molecule are $1.37,1.39$ and $1.40 \AA$. The average value of these three distances is $1.387 \AA$ which is in good agreement with the accepted value of $1.395 \AA$ for the $\mathrm{C}-\mathrm{C}$ distances in a benzene ring.

Table 3. Bond lengths and bond angles in the molecule*

\quad Bond	Length
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.37 \AA$
$\mathrm{C}(1)-\mathrm{C}\left(3^{\prime}\right)$	1.40
$\mathrm{C}(1)-\mathrm{H}(4)$	0.92
$\mathrm{C}(2)-\mathrm{C}(3)$	1.39
$\mathrm{C}(2)-\mathrm{N}$	1.49
$\mathrm{C}(3)-\mathrm{H}(5)$	1.07
$\mathrm{~N}-\mathrm{H}(1)$	0.90
$\mathrm{~N}--\mathrm{H}(2)$	1.15
$\mathrm{~N}-\mathrm{H}(3)$	0.94

Atoms	Angle
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}\left(3^{\prime}\right)$	$116 \cdot 7^{\circ}$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(1)-\mathrm{H}(4)$	$123 \cdot 4$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(4)$	$119 \cdot 8$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}$	$116 \cdot 8$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$123 \cdot 9$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}$	$119 \cdot 2$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}\left(1^{\prime}\right)$	$119 \cdot 3$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(5)$	$124 \cdot 8$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(3)-\mathrm{H}(5)$	$115 \cdot 7$
$\mathrm{C}(2)-\mathrm{N}--\mathrm{H}(1)$	$109 \cdot 1$
$\mathrm{C}(2)-\mathrm{N}-\mathrm{H}(2)$	$111 \cdot 2$
$\mathrm{C}(2)-\mathrm{N}-\mathrm{H}(3)$	$112 \cdot 7$

* The standard deviations are: bonds and angles not involving hydrogen, $0.013 \AA$ and 1.0°; bonds and angles involving hydrogen $\sim 0.14 \AA$ and 9°.

Fig.4. Bond lengths and angles in the molecule.

Fig.5. The structure in projection viewed down the c axis.

The structures of very few aromatic compounds with an attached amino group have been solved so far. If the amino group is not protonated, the expected $\mathrm{C}-\mathrm{N}$ distance would be $1.37 \AA$. For example, the experimental values of such distances are $1.37 \AA$ in p-nitroaniline (Trueblood, Goldish \& Donohue, 1961), $1.39 \AA$ in p-aminophenol (Brown, 1951), $1.39 \AA$ in 4 -aminosalicylic acid (Bertinotti, Giacomello \& Liquori, 1954), $1 \cdot 41 \AA$ in 2,5 -dichloroaniline (Sakurai, Sundaralingam \& Jeffrey, 1963). In all these cases, there is a significant degree of double bond character in the $\mathrm{C}-\mathrm{NH}_{2}$ bond, and the $-\mathrm{NH}_{2}$ group is coplanar with the aromatic ring (Trueblood etal., 1961), as one would expect from the resonance consideration.
In the compound under investigation, in the form of the hydrochloride, the $-\mathrm{NH}_{2}$ group becomes $-\mathrm{NH}_{3}^{+}$, and in fact all three protons have been located. The $\mathrm{C}-\mathrm{NH}_{3}^{+}$distance is found to be $1 \cdot 49 \AA$ and the $\mathrm{C}-\mathrm{N}$ distance for a single bond is $1.47 \AA$ (Pauling, 1958). There are only a few examples of aromatic compounds for comparison with the present case. The reported values of $\mathrm{C}-\mathrm{NH}_{3}^{+}$distances are $1.455 \AA$ in m-tolidine hydrochloride (Fowweather \& Hargreaves, 1950), $1.45 \AA$ in p-tolidine hydrochloride (von Eller, 1955), $1.474 \AA$ in o-aminophenol hydrochloride (Cesur \& Richards, 1965) and $1.35 \AA$ in aniline hydrochloride (Brown, 1949). The distances in the first three examples are compatible with the present observation. The short length of $1.35 \AA$ in aniline hydrochloride is significantly different, but the coordinates may not have been accurately determined since only projection data were used for refining the structure. The observed $\mathrm{C}-\mathrm{N}$ distance of $1.49 \AA$ in the present investigation supports the idea that the $-\mathrm{NH}_{3}^{+}$is not conjugated with the benzene ring (Sakurai, et al. 1963).
It may, however, be mentioned that in amino acids, when the amino group gets protonated, the $\mathrm{C}-\mathrm{NH}_{3}^{+}$ distance has a value slightly larger than single bond value of $\mathrm{C}-\mathrm{N}=1.47 \AA$ (Pauling, 1958). The weighted mean value for the $\mathrm{C}-\mathrm{NH}_{3}^{+}$distance in accurately solved crystal structures of amino acids is $1.487 \AA$ (Marsh \& Donohue, 1967). However, the carbon atom is $s p^{3}$ hybridized in these cases. It would therefore be expected that in the aromatic molecule under investigation in which the carbon atom is $s p^{2}$ hybridized, the $\mathrm{C}-\mathrm{NH}_{3}^{+}$distance would be somewhat shorter than the value observed in amino acids.
The average values of the two $\mathrm{C}-\mathrm{H}$ bond distances and the three $\mathrm{N}-\mathrm{H}$ bond distances are $1.0 \AA$ and $1.0 \AA$ respectively and the individual values are not significantly different from these values.
As expected, the phenylenediamine molecule is planar, except for the amino hydrogens. The equation of the least-squares plane passing through the eight heavier atoms is given by

$$
0.0184 X+0.4255 Y+0.9047 Z=2.844 \AA
$$

where X, Y, Z are coordinates in \AA referred to an orthogonal system in which the X axis is along the a axis,
the Y axis is in the $a b$ plane normal to the X axis and the Z axis is normal to the $X Y$ plane. The deviations of the atoms from this plane are $C(1),-0.002 \AA ; C(2)$, $0.022 \AA ; C(3),-0.002 \AA ; N,-0.010 \AA$

Intermolecular hydrogen bonding

A view of the structure projected down the c axis is shown in Fig. 5. The molecules in the lattice are held together by a three-dimensional network of hydrogen bonds. There are three protons available with the $-\mathrm{NH}_{3}^{+}$group. The nitrogen atom has three close neighbours and all of them are chloride ions. The distances from the nitrogen atom to $\mathrm{Cl}, \mathrm{Cl}(\mathrm{I})$ and $\mathrm{Cl}(\mathrm{II})$ are $3.21,3.25$ and $3.20 \AA$ respectively. The protons are oriented almost tetrahedrally towards these ions, with respect to the $\mathrm{C}(2)-\mathrm{N}$ bond. The angles $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ indicate that these hydrogen bonds are fairly linear. The values of the hydrogen bond lengths and angles are given in Table 4.

The author is very grateful to Professor G. N. Ramachandran and Professor R. Srinivasan for their valuable suggestions. His thanks are due to the authorities of

Table 4. Hydrogen bonding distances and angles

the Tata Institute of Fundamental Research, Bombay and the Fundamental Engineering Research Establishment, Madras for making available the computational facilities. He is grateful to the Government of India and the Council of Scientific and Industrial Research, India for financial assistance.

References

Bertinotti, F., Giacomello, G. \& Liquori, A. M. (1954). Acta Cryst. 7, 808.
Brown, C. J. (1949). Acta Cryst. 2, 228.
Brown, C. J. (1951). Acta Cryst. 4, 100.
Buerger, M. J. (1951). Acta Cryst. 4, 531.
Cesur, A. F. \& Richards, J. P. G (1965). Z. Kristallogr. 122, 283.
Cruickshank, D. W. J., Pllling, D. E., Bujosa, A., Lovell, F. M. \& Truter, M. R. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis. Vol.4, p.32. Oxford: Pergamon Press.
Eller, G. von (1955). Bull. Soc. frang. Min. Crist. p. 257.
Fowweather, F. \& Hargreaves, A. (1950). Acta Cryst. 3, 81.
Gantzel, P. K., Sparks, R. A. \& Trueblood, K. N. (1961). University of California Program UCLALS 1.
International Tables for X-ray Crystallography (1962). Vol.III. Birmingham: Kynoch Press.
Marsh, R. E. \& Donohue, J. (1967). Advances in Protein Chemistry. Vol.22, p.235. New York: Academic Press.
Pauling, L. (1958). The Nature of the Chemical Bond, p. 229. Ithaca: Cornell Univ. Press.
Phillips, D. C. (1962). International Tables for X-ray Crystallography, Vol.III, p.140. Birmingham: Kynoch Press.
Sakurai, T., Sundaralingam, M. \& Jeffrey, G A. (1963). Acta Cryst. 16, 354.
Stanley, E. (1955). Acta Cryst. 8, 58.
Trueblood, K. N., Goldish, E. \& Donohue, J. (1961). Acta Cryst. 14, 1009.
Wilson, A. J. C. (1942). Nature, Lond. 150, 151.

Acta Cryst. (1969). B25, 374

Least-Squares Weighting Schemes for Diffractometer-Collected Data.
 II. The Effect of Random Setting Errors

By D.F. Grant and R.C.G. Killean
Department of Physics, University of St. Andrews, St. Andrews, Scotland

and J. L. Lawrence
Department of Physics, University of Stirling, Stirling, Scotland
(Received 31 January 1968)
An analysis is made of the weighting function derived on the basis of counting statistics and random setting errors for a constant-time diffractometer experiment. It is shown that these two random errors must make a major contribution to the weighting function and a practical application of this function is discussed in detail.

Introduction

It has been shown (Killean, 1967a) that, on consideration of counting statistics alone, the weighting schemes
for constant-count and constant-time experiments are very different, and that the weights obtained for the constant-time experiment are not suitable for a satisfactory least-squares refinement. These weighting

[^0]: * Contribution No. 244 from the Centre of Advanced Study in Physics University of Madras, Madras 25, India.

[^1]: * The author is extremely grateful to the referee for computational help.

